

Home Search Collections Journals About Contact us My IOPscience

Random matrix theory and discrete moments of the Riemann zeta function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 2907

(http://iopscience.iop.org/0305-4470/36/12/303)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 171.66.16.96

The article was downloaded on 02/06/2010 at 11:29

Please note that terms and conditions apply.

Random matrix theory and discrete moments of the Riemann zeta function

C P Hughes¹

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: hughes@aimath.org

Received 22 November 2002 Published 12 March 2003 Online at stacks.iop.org/JPhysA/36/2907

Abstract

We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.

PACS numbers: 02.10.De, 02.10.Yu

1. Introduction

Let $\zeta(s)$ be the Riemann zeta function, and denote its non-trivial zeros by $1/2 + \mathrm{i} \gamma_n$, with $0 < \gamma_1 \leqslant \gamma_2 \leqslant \ldots$ (For simplicity, we will assume the Riemann hypothesis, which says that $\gamma_n \in \mathbb{R}$.) It is known (see, for example, Titchmarsh's book [1] for details) that if N(T) is the number of zeros with $0 < \gamma_n \leqslant T$ then

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi e} + O(\log T).$$

Moments of the zeta function

$$I_k(T) := \frac{1}{T} \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^{2k} dt$$

have long been of interest to number theorists, with it being widely believed that

$$\frac{1}{T} \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^{2k} dt \sim f_k a(k) (\log T)^{k^2}$$

with

$$a(k) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p} \right)^{k^2} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+k)}{m! \Gamma(k)} \right)^2 p^{-m}$$
 (1)

¹ Current address: American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306, USA.

and f_k being an integer (when k is integer) divided by $(k^2)!$, whose value was unknown apart from in a few cases. The known values of f_k are $f_0 = 1$ (trivial), $f_1 = 1$ (Hardy and Littlewood [2]), and $f_2 = 1/12$ (Ingham [3]). The value $f_3 = 42/9!$ has been conjectured by Conrey and Ghosh [4] and $f_4 = 24024/16!$ is a conjecture of Conrey and Gonek [5]. We should mention that a(k) given in (1) can be calculated for certain k: a(0) = a(1) = 1 and $a(-1) = a(2) = 6/\pi^2$.

In [6], Keating and Snaith argued that one can create a probabilistic model for the zeta function around height T using the characteristic polynomial of an $N \times N$ unitary matrix chosen according to Haar measure, when

$$N = \log \frac{T}{2\pi}.$$

Setting

$$Z_U(\theta) := \det(I - e^{-i\theta}U)$$
$$= \prod_{n=1}^{N} (1 - e^{i(\theta_n - \theta)})$$

and defining $M_N(2k) := \mathbb{E}_N\{|Z_U(0)|^{2k}\}$ where \mathbb{E}_N denotes expectation with respect to Haar measure, they found that

$$M_N(2k) = \prod_{j=1}^N \frac{\Gamma(j)\Gamma(j+2k)}{\Gamma(j+k)^2} \sim \frac{G^2(k+1)}{G(2k+1)} N^{k^2}$$
 (2)

as $N \to \infty$ for fixed k subject to Re(k) > -1/2, where $G(\cdot)$ is the Barnes G-function.

By comparing with the known (and previously conjectured) values of f_k , they were led to the conjecture that $f_k = G^2(k+1)/G(2k+1)$.

Conjecture 1 (Keating and Snaith). For fixed k > -1/2, as $T \to \infty$,

$$\frac{1}{T} \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^{2k} dt \sim \frac{G^2(k+1)}{G(2k+1)} a(k) \left(\log \frac{T}{2\pi} \right)^{k^2}$$

where $G(\cdot)$ is the Barnes G-function and a(k) is given in (1).

Following this, Hughes *et al* [7] used the characteristic polynomial to model the discrete moments of the derivative of the zeta function,

$$J_k(T) := \frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta' \left(\frac{1}{2} + i \gamma_n \right) \right|^{2k}.$$

They calculated that for fixed k subject to Re(k) > -3/2,

$$\mathbb{E}_{N}\left\{\frac{1}{N}\sum_{n=1}^{N}|Z'_{U}(\theta_{n})|^{2k}\right\} \sim \frac{G^{2}(k+2)}{G(2k+3)}N^{k(k+2)}$$

as $N \to \infty$, and they used this to conjecture the leading order term in the asymptotic expansion of $J_k(T)$.

Conjecture 2 (Hughes, Keating and O'Connell). *If all the zeros of the zeta function are simple, then for fixed* k > -3/2*, as* $T \to \infty$ *,*

$$\frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta' \left(\frac{1}{2} + i\gamma_n \right) \right|^{2k} \sim \frac{G^2(k+2)}{G(2k+3)} a(k) \left(\log \frac{T}{2\pi} \right)^{k(k+2)}$$

where a(k) is given by (1), and $G(\cdot)$ is the Barnes G-function.

Again this conjecture is found to agree with all previously known results; when k = -1(a conjecture of Gonek [8]), when k = 0 (trivial) and when k = 1 (a theorem of Gonek [9] under RH). Also, extending a theorem due to Conrey et al [10] (recorded in this paper as theorem 6) beyond its range of (proven) applicability, conjecture 7.1 states that $J_2(T) \sim \frac{1}{1440\pi^2} \left(\log \frac{T}{2\pi}\right)^8$, which agrees perfectly with conjecture 2.

It is striking that conjectures 1 and 2 have very similar form. The purpose of this paper is to unify them as special cases of one result.

In the next section we will show

$$\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{1}+\frac{y}{N}\right)\right|^{2k}\right\} \sim \frac{G^{2}(k+1)}{G(2k+1)}F_{k}(y)N^{k^{2}}$$

where $F_k(y)$ is a certain function, independent of N, given in theorem 3. We will then use this to conjecture that for $L = \frac{1}{2\pi} \log \frac{T}{2\pi}$,

$$\frac{1}{N(T)} \sum_{0 \le x \le T} \left| \zeta \left(\frac{1}{2} + i(\gamma_n + \alpha/L) \right) \right|^{2k} \sim \frac{G^2(k+1)}{G(2k+1)} a(k) F_k(2\pi\alpha) \left(\log \frac{T}{2\pi} \right)^{k^2}$$

and will show, in section 3, that this conjecture contains conjectures 1 and 2 as special cases $(\alpha \to \infty \text{ and } \alpha \to 0 \text{ respectively})$. The conjecture is found to agree with a known result of Gonek [9], and the extension of the theorem due to Conrey et al [10] cited above. These comparisons are discussed in section 3.1.

2. The random matrix calculation

Theorem 3. For fixed k with Re(k) > -1/2, and for $|x| \le AN$, with $A < \pi$ constant,

$$\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{1}+\frac{2x}{N}\right)\right|^{2k}\right\} = \frac{G^{2}(k+1)}{G(2k+1)}F_{k}(2x)N^{k^{2}} + O(N^{k^{2}-1})$$

where

$$F_k(2x) = x^2 j_k(x)^2 + x^2 j_{k-1}(x)^2 - 2kx j_k(x) j_{k-1}(x)$$
(3)

where $j_n(x)$ are the spherical Bessel functions of the first kind.

Proof. First note that

$$|Z_U(\theta_N + \beta)|^{2k} = |1 - e^{-i\beta}|^{2k} \prod_{n=1}^{N-1} |1 - e^{i(\theta_n - \theta_N - \beta)}|^{2k}.$$

The average of this over all $N \times N$ unitary matrices with Haar measure can be written [11, 12] as an N-fold integral

$$\mathbb{E}_{N} \left\{ \prod_{n=1}^{N-1} |1 - e^{i(\theta_{n} - \theta_{N} - \beta)}|^{2k} \right\} = \frac{1}{N! (2\pi)^{N}} \int_{-\pi}^{\pi} \dots \int_{-\pi}^{\pi} \prod_{1 \leq i < j \leq N} |e^{i\theta_{i}} - e^{i\theta_{j}}|^{2k} \times \prod_{n=1}^{N-1} |1 - e^{i(\theta_{n} - \theta_{N} - \beta)}|^{2k} d\theta_{1} \dots d\theta_{N}.$$

Putting all the j = N terms from the first product into the second, we see that

$$\mathbb{E}_{N}\{|Z_{U}(\theta_{N}+\beta)|^{2k}\} = \frac{1}{N} \left| 2\sin\left(\frac{1}{2}\beta\right) \right|^{2k} \mathbb{E}_{N-1}\{|Z_{\widetilde{U}}(0)|^{2}|Z_{\widetilde{U}}(\beta)|^{2k}\}$$
(4)

where $Z_{\widetilde{U}}$ is the characteristic polynomial of an $(N-1)\times (N-1)$ unitary matrix.

By rotation invariance of Haar measure,

$$\mathbb{E}_{N-1}\{|Z_{\widetilde{U}}(0)|^2|Z_{\widetilde{U}}(\beta)|^{2k}\} = \mathbb{E}_{N-1}\{|Z_{\widetilde{U}}(0)|^{2k}|Z_{\widetilde{U}}(\beta)|^2\}.$$

This is calculated in theorem 4, where it is shown that for Re(k) > -1/2,

$$\mathbb{E}_{N}\{|Z_{U}(0)|^{2k}|Z_{U}(y/N)|^{2}\} \sim \frac{G^{2}(k+1)}{G(2k+1)} \sum_{p=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2k+p)!(2k+1+2p)!} (-1)^{p} y^{2p} N^{(k+1)^{2}}$$

and substituting this into (4) (where we put $\beta = y/N$) we see that

$$\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{N}+\frac{y}{N}\right)\right|^{2k}\right\} = \frac{G^{2}(k+1)}{G(2k+1)}F_{k}(y)N^{k^{2}}\left(1+O\left(\frac{1}{N}\right)\right)$$

where

$$F_k(y) = k \sum_{p=0}^{\infty} \frac{(k-1+p)!(k+p)!}{p!(2k+p)!(2k+1+2p)!} (-1)^p y^{2k+2p}.$$
 (5)

The spherical Bessel functions of the first kind are defined as

$$j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+1/2}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m (n+m)!}{m! (2n+2m+1)! 2^{2m}} (2z)^{n+2m}$$

where $J_{\nu}(z)$ is the ν th order Bessel function of the first kind. Hence,

$$F_k(2x) = x^2 j_k(x)^2 + x^2 j_{k-1}(x)^2 - 2kx j_k(x) j_{k-1}(x)$$

which can be seen by comparing the Taylor expansions.

The above large-N asymptotics are for x = o(N). This can be extended to $|x| \le AN$ for an arbitrary constant $A < \pi$ as follows: let β be a fixed constant subject to $0 < \beta < 2\pi$. By (4) and the results of Basor [13],

$$\mathbb{E}_{N}\{|Z_{U}(\theta_{1}+\beta)|^{2k}\} = \frac{1}{N} |2\sin\left(\frac{1}{2}\beta\right)|^{2k} \mathbb{E}_{N-1}\{|Z_{\widetilde{U}}(0)|^{2k}|Z_{\widetilde{U}}(\beta)|^{2}\} \sim \frac{G^{2}(k+1)}{G(2k+1)} N^{k^{2}}.$$

If one lets $x = N\beta/2$ then the large-x asymptotics of Bessel functions (see, for example, chapter 9 of [14]) implies that

$$F_k(N\beta) = 1 + O\left(\frac{1}{N}\right)$$

and so theorem 3 gives the correct first-order term, for $|x| \leq AN$ for $A < \pi$ a constant. \square

Remark. When n is an integer,

$$j_n(x) = (-1)^n x^n \left(\frac{1}{x} \frac{d}{dx}\right)^n \frac{\sin x}{x}$$

which leads to a neat evaluation of $F_k(2x)$ for integer k, the first few being:

$$F_1(2x) = \frac{x^2 - \sin^2(x)}{x^2}$$

$$F_2(2x) = \frac{x^4 - 3x^2 + 3x\sin(2x) + (2x^2 - 3)\sin^2(x)}{x^4}$$

$$F_3(2x) = \frac{x^6 - 3x^4 - 45x^2 + (-12x^3 + 45x)\sin(2x) + (-3x^4 + 72x^2 - 45)\sin^2(x)}{x^6}.$$
(6)

Theorem 4.

$$\mathbb{E}_{N}\{|Z(0)|^{2k}|Z(\beta)|^{2}\} = M_{N}(2k)N!(N+2k)!$$

$$\times \sum_{n=0}^{N} \frac{(2\sin(\beta/2))^{2n}}{n!(2k+n)!} \sum_{m=0}^{N-n} \frac{(N+k-m)!(k+m+n)!}{(N-n-m)!m!} e^{\mathrm{i}\beta(2m-N+n)}$$

where $M_N(2k)$ is given in (2). If $\frac{y}{N} \to 0$ as $N \to \infty$, then for fixed Re(k) > -1/2,

$$\mathbb{E}_{N}\left\{|Z(0)|^{2k}\left|Z\left(\frac{y}{N}\right)\right|^{2}\right\} = \frac{G^{2}(k+1)}{G(2k+1)} \sum_{p=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2k+p)!(2k+1+2p)!} (-1)^{p} y^{2p} \times N^{(k+1)^{2}} \left(1 + O\left(\frac{1}{N}\right)\right).$$

Proof. If *k* is an integer, then

$$\begin{split} \mathbb{E}_{N} \left\{ \prod_{n=1}^{N} |1 - \mathrm{e}^{\mathrm{i}\theta_{n}}|^{2k} |1 - \mathrm{e}^{\mathrm{i}\theta_{n}} \, \mathrm{e}^{-\mathrm{i}\beta}|^{2} \right\} \\ &= \frac{1}{(2\pi)^{N} N!} \int \cdots \int_{-\pi}^{\pi} \prod_{1 \leqslant j < m \leqslant N} (\mathrm{e}^{\mathrm{i}\theta_{j}} - \mathrm{e}^{\mathrm{i}\theta_{m}}) (\mathrm{e}^{-\mathrm{i}\theta_{j}} - \mathrm{e}^{-\mathrm{i}\theta_{m}}) \\ &\times \prod_{n=1}^{N} (1 - \mathrm{e}^{\mathrm{i}\theta_{n}})^{k} (1 - \mathrm{e}^{-\mathrm{i}\theta_{n}})^{k} (1 - \mathrm{e}^{\mathrm{i}\theta_{n}} \, \mathrm{e}^{-\mathrm{i}\beta}) (1 - \mathrm{e}^{-\mathrm{i}\theta_{n}} \, \mathrm{e}^{\mathrm{i}\beta}) \, \mathrm{d}\theta_{n} \end{split}$$

which equals, after some simple manipulation of the terms

$$\frac{(-1)^{N(N-1)/2+kN+N}e^{-\mathrm{i}N\beta}}{(2\pi)^NN!} \int \cdots \int_{-\pi}^{\pi} \prod_{1\leqslant j < m \leqslant N} (e^{\mathrm{i}\theta_j} - e^{\mathrm{i}\theta_m})^2 \times \prod_{n=1}^{N} (e^{\mathrm{i}\theta_n})^{-N-k} (1 - e^{\mathrm{i}\theta_n})^{2k} (e^{\mathrm{i}\theta_n} - e^{\mathrm{i}\beta})^2 d\theta_n.$$

Therefore,

$$\mathbb{E}_{N}\{|Z_{U}(0)|^{2k}|Z_{U}(\beta)|^{2}\} = \frac{e^{-iN\beta}}{N!}(-1)^{N(N-1)/2+kN+N}$$

$$\times \operatorname{CT}\left\{ \prod_{1 \leq j < m \leq N} (t_{j} - t_{m})^{2} \prod_{n=1}^{N} \frac{1}{t_{n}^{N+k}} (1 - t_{n})^{2k} (t_{n} - e^{i\beta})^{2} \right\}$$

where $CT\{\cdot\}$ denotes the constant term in the Laurent expansion in the variables t_1, \ldots, t_N . The constant term equals (by lemma 1 of [15])

$$\lim_{y \to 0} y^N \int \cdots \int_0^1 \prod_{1 \leqslant j < m \leqslant N} (t_j - t_m)^2 \prod_{n=1}^N t_n^{-N-k+y-1} (1 - t_n)^{2k} (t_n - e^{i\beta})^2 dt_n.$$

Kaneko [16] has evaluated this integral (which is a generalization of Selberg's integral)

$$\prod_{j=1}^{N} \frac{\Gamma(1+j)\Gamma(j+y-N-k)\Gamma(j+2k+1)}{\Gamma(j+y+k+1)} \times \sum_{m,n=0}^{\infty} \frac{(-N)_{m+n}(y+k+1)_{m+n}}{(y-N-k)_{m}(2k+1)_{n}} \frac{e^{2mi\beta}(1-e^{i\beta})^{2n}}{m!n!}$$

where $(a)_n = a(a+1)\dots(a+n-1) = \Gamma(a+n)/\Gamma(a)$. Since we have assumed that k is an integer,

$$\lim_{y\to 0} y\Gamma(y+j-N-k) = \frac{(-1)^{N+k-j}}{\Gamma(N+k-j+1)}$$

and so we have

$$\mathbb{E}_{N}\{|Z_{U}(0)|^{2k}|Z_{U}(\beta)|^{2}\} = \frac{e^{-iN\beta}}{N!} \prod_{j=1}^{N} \frac{\Gamma(1+j)\Gamma(j+2k+1)}{\Gamma(j+k+1)\Gamma(N+k-j+1)} \times \sum_{m,n=0}^{\infty} \frac{(-N)_{m+n}(k+1)_{m+n}}{(-N-k)_{m}(2k+1)_{n}} \frac{e^{2mi\beta}(1-e^{i\beta})^{2n}}{m!n!}.$$

Expanding everything out in terms of the gamma function

$$\mathbb{E}_{N}\{|Z_{U}(0)|^{2k}|Z_{U}(\beta)|^{2}\} = M_{N}(2k) \frac{\Gamma(N+1+2k)N!}{\Gamma(N+1+k)^{2}} \sum_{n=0}^{N} \frac{(2\sin(\beta/2))^{2n}}{n!\Gamma(2k+n+1)}$$

$$\times \sum_{m=0}^{N-n} \frac{\Gamma(N+k+1-m)\Gamma(k+n+1+m)}{\Gamma(N+1-n-m)!} \frac{e^{i\beta(2m-N+n)}}{m!}$$

where $M_N(2k)$ is defined in (2). Observe that the inner summand is invariant as $m \to N-n-m$, and so the inner sum is in fact a sum of cosines (and thus the series expansion in β contains only even powers of β). Furthermore, observe that both sides of the equation are analytic functions of k (for Re(k) \geq 0), both sides can be easily bounded by O($2^{2N\text{Re}(k)}$) (for large k, with N and β fixed), and the two sides are equal at the positive integers. Thus by Carlson's theorem (see section 17 of [12], for example), the restriction that k must be an integer in the above calculations is no longer required, and the left-hand side equals the right-hand side for all complex k.

Now, using the fact that $(-a)_n = (-1)^n \Gamma(a+1) / \Gamma(a+1-n)$, we have

$$\begin{split} \sum_{m=0}^{N-n} \frac{\Gamma(N+k+1-m)\Gamma(k+n+1+m)}{\Gamma(N+1-n-m)} \frac{\mathrm{e}^{\mathrm{i}\beta(2m-N+n)}}{m!} \\ &= \frac{\Gamma(N+k+1)\Gamma(k+n+1)}{\Gamma(N-n+1)} {}_{2}F_{1} \begin{pmatrix} -N+n, k+n+1 \\ -N-k \end{pmatrix} ; \mathrm{e}^{2\mathrm{i}\beta} \end{split}$$

where

$$_{2}F_{1}\begin{pmatrix} a, b \\ c \end{pmatrix} = \sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{z^{m}}{m!}$$

is the Gauss hypergeometric function. (If a, c are negative integers with -a < -c then it is a polynomial of degree -a.)

Applying the quadratic hypergeometric transformation 15.3.26 of [14] we get

$${}_{2}F_{1}\begin{pmatrix} -N+n, k+n+1 \\ -N-k \end{pmatrix} e^{i(n-N)\beta}$$

$$= {}_{2}F_{1}\begin{pmatrix} -\frac{1}{2}N+\frac{1}{2}n, -\frac{1}{2}N+\frac{1}{2}n+\frac{1}{2} \\ -N-k \end{pmatrix} (2\cos\beta)^{N-n}.$$
(7)

For a positive integer m,

$${}_{2}F_{1}\begin{pmatrix} -m,b\\c \end{pmatrix} = \frac{\Gamma(1-c-m)\Gamma(1-c+b)}{\Gamma(1-c)\Gamma(1-c-m+b)} {}_{2}F_{1}\begin{pmatrix} -m,b\\1-c-m+b \end{pmatrix} ; 1-z$$

and so we see that the right-hand side of (7) equals

$$\begin{split} \frac{\Gamma\left(\frac{1}{2}N + \frac{1}{2}n + k + 1\right)\Gamma\left(\frac{1}{2}N + \frac{1}{2}n + k + \frac{3}{2}\right)}{\Gamma(N + k + 1)\Gamma\left(k + n + \frac{3}{2}\right)} (2\cos\beta)^{N - n} \\ \times {}_2F_1\left(-\frac{1}{2}N + \frac{1}{2}n, -\frac{1}{2}N + \frac{1}{2}n + \frac{1}{2}; 1 - \frac{1}{\cos^2(\beta)}\right). \end{split}$$

Therefore, we have proven

$$\mathbb{E}_{N}\{|Z_{U}(0)|^{2k}|Z_{U}(\beta)|^{2}\}$$

$$=\sum_{n=0}^{N}\sum_{m=0}^{\lfloor \frac{1}{2}(N-n)\rfloor}T(N,k,m,n)(-1)^{m}(2\sin(\beta/2))^{2n}(\sin\beta)^{2m}(\cos\beta)^{N-n-2m}$$

where

$$T(N, k, m, n) = M_N(2k) \frac{N!(N+2k)! \left(\frac{1}{2}N + \frac{1}{2}n + k\right)! \left(\frac{1}{2}N + \frac{1}{2}n + k + \frac{1}{2}\right)!}{(N-n)!(N+k)!^2} \times \frac{2^{N-n} \left(-\frac{1}{2}N + \frac{1}{2}n\right)_m \left(-\frac{1}{2}N + \frac{1}{2}n + \frac{1}{2}\right)_m (k+n)!}{m!n!(2k+n)! \left(n+k+\frac{1}{2}+m\right)!}.$$

Observe that for fixed k, m, n with Re(k) > -1/2

$$T(N,k,m,n) = \frac{G^2(k+1)}{G(2k+1)} \frac{(k+n)!(k+n+m)!}{m!n!(2k+n)!(2k+2n+2m+1)!} N^{(k+1)^2+2n+2m} \left(1 + \mathcal{O}\left(\frac{1}{N}\right)\right)$$

and so

$$\mathbb{E}_{N}\{|Z(0)|^{2k}|Z(y/N)|^{2}\} \sim \frac{G^{2}(k+1)}{G(2k+1)}N^{(k+1)^{2}} \times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^{m} \frac{(k+n)!(k+n+m)!}{m!n!(2k+n)!(2k+2n+2m+1)!} y^{2m+2n}$$

in the sense that for each fixed integer h, the coefficient of y^h on the Taylor expansion of the left-hand side converges to that of the right-hand side as $N \to \infty$.

Finally we show that

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^m \frac{(k+n)!(k+n+m)!}{m!n!(2k+n)!(2k+2n+2m+1)!} y^{2m+2n}$$

$$= \sum_{n=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2k+p)!(2k+1+2p)!} (-1)^p y^{2p}.$$

This can be proven by comparing the coefficients of y^{2p} . That is, we wish to show for all integer $p \ge 0$,

$$\sum_{n=0}^{p} \frac{(-1)^{p-n}(k+n)!(k+p)!}{(p-n)!n!(2k+n)!(2k+2p+1)!} = \frac{(-1)^{p}k(k-1+p)!(k+p)!}{p!(2k+p)!(2k+1+2p)!}$$

This is equivalent to showing

$$\sum_{n=0}^{p} \frac{(-1)^n (k+n)! p! (2k+p)!}{k(p-n)! n! (2k+n)! (k-1+p)!} = 1$$
 (8)

for all integer $p \ge 0$, and this we shall do by creating the Wilf–Zeilberger pair [17]. Denote the summand in (8) by F(p, n), and observe that

$$F(p+1,n) - F(p,n) = G(p,n+1) - G(p,n)$$
(9)

where

$$G(p,n) = \frac{(2k+n)n}{(n-p-1)(k+p)} F(p,n)$$

(the (2k+n)n/(n-p-1)(k+p) being calculated by Zeilberger's algorithm). Summing both sides of (9) over n, we see that the right-hand side telescopes to zero, which shows that the left-hand side of (8) must be a constant, independent of p. Putting p=0, direct calculation shows that the constant is 1.

3. Conjecture about the zeta function

Conjecture 5. For fixed k subject to Re(k) > -1/2,

$$\frac{1}{N(T)} \sum_{0 \le \gamma_n \le T} \left| \zeta \left(\frac{1}{2} + i \left(\gamma_n + \alpha / L \right) \right) \right|^{2k} \sim \frac{G^2(k+1)}{G(2k+1)} a(k) F_k(2\pi\alpha) \left(\log \frac{T}{2\pi} \right)^{k^2}$$

as $T \to \infty$, uniformly in α for $|\alpha| \leqslant L$, where $L = \frac{1}{2\pi} \log \frac{T}{2\pi}$ is the density of zeros of height T, $G(\cdot)$ is the Barnes G-function, a(k) is given by (1) and $F_k(2\pi\alpha)$ is given in theorem 3.

If this conjecture is true, then we are able to prove conjecture 2 and a variant of the Keating–Snaith conjecture (conjecture 1).

Corollary 5.1. If conjecture 5 is true, then

$$\frac{1}{N(T)} \sum_{0 \le \gamma_n \le T} \left| \zeta' \left(\frac{1}{2} + i \gamma_n \right) \right|^{2k} \sim \frac{G^2(k+2)}{G(2k+3)} a(k) \left(\log \frac{T}{2\pi} \right)^{k(k+2)}.$$

Proof. By the definition of differentiation,

$$\left|\zeta'\left(\frac{1}{2} + i\gamma_n\right)\right|^{2k} = L^{2k} \lim_{a \to 0} \frac{\left|\zeta\left(\frac{1}{2} + i\left(\gamma_n + \frac{\alpha}{L}\right)\right)\right|^{2k}}{\alpha^{2k}}.$$

From (5) we have

$$\lim_{\alpha \to 0} \frac{F(2\pi\alpha)}{\alpha^{2k}} = (2\pi)^{2k} \frac{k!k!}{(2k)!(2k+1)!}$$

so applying conjecture 5 and using uniformity to swap the $\alpha \to 0$ and $N \to \infty$ limits, we have

$$\begin{split} \frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta' \left(\frac{1}{2} + \mathrm{i} \gamma_n \right) \right|^{2k} &\sim \frac{G^2(k+1)}{G(2k+1)} a(k) L^{2k} \frac{(2\pi)^{2k} k! k!}{(2k)! (2k+1)!} \left(\log \frac{T}{2\pi} \right)^{k^2} \\ &= \frac{G^2(k+2)}{G(2k+3)} a(k) \left(\log \frac{T}{2\pi} \right)^{k(k+2)} \end{split}$$

as required.

Corollary 5.2. From conjecture 5 it follows that for $\beta > 0$ fixed,

$$\frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta \left(\frac{1}{2} + i(\gamma_n + \beta) \right) \right|^{2k} \sim \frac{G^2(k+1)}{G(2k+1)} a(k) \left(\log \frac{T}{2\pi} \right)^{k^2}. \tag{10}$$

Proof. The asymptotics as $z \to \infty$ of the spherical Bessel function (see chapters 9 and 10 of [14]) are

$$j_n(z) \sim \begin{cases} \frac{1}{z} (-1)^{(n+1)/2} \cos z & \text{if } n \text{ is odd} \\ \frac{1}{z} (-1)^{n/2} \sin z & \text{if } n \text{ is even} \end{cases}$$

and putting this into (3) we have

$$\lim_{\alpha\to\infty}F_k(2\pi\alpha)=1.$$

Setting $\alpha = L\beta$ in conjecture 5 completes the proof.

Remark. Note that corollary 5.2 can be thought of as a variant of conjecture 1. This is because one expects the mean of $|\zeta(1/2+it)|^{2k}$ to be independent of the average taken, and the Keating–Snaith conjecture is a result about the continuous mean, whereas corollary 5.2 is a result about a discrete mean. To see this, recall that the zeros get denser higher up the critical line, and so if $\beta > 0$ is fixed and γ_n is random, one might expect $\zeta\left(\frac{1}{2}+i(\gamma_n+\beta)\right)$ to be random (whereas, if β was small, it would be highly influenced by the fact that $\zeta(1/2+i\gamma_n)=0$). The left-hand side of (10) averages this, and thus acts as a discrete mean of $|\zeta(1/2+it)|^{2k}$.

3.1. Comparison with the zeta function

Gonek [9] showed that if the Riemann hypothesis is true then

$$\frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta \left(\frac{1}{2} + i(\gamma_n + \alpha/L) \right) \right|^2 \sim \left(1 - \left(\frac{\sin(\pi \alpha)}{\pi \alpha} \right)^2 \right) \log \frac{T}{2\pi}$$

uniformly in α for $|\alpha| \leq L/2$, which is in perfect agreement with conjecture 5 when k = 1.

There is no proof of the conjecture for k = 2 (unlike conjecture 1 which is proven for k = 1 and 2). But there are theorems along the lines of conjecture 5 for k = 2.

Theorem 6 (Conrey, Ghosh and Gonek [10]). Assume GRH and let

$$A(s) = \sum_{n \leqslant x} n^{-s}$$
 where $x = \left(\frac{T}{2\pi}\right)^{\eta}$

for some $\eta \in (0, \frac{1}{2})$. Then,

$$\frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta A \left(\frac{1}{2} + i(\gamma_n + \alpha/L) \right) \right|^2 \sim \frac{6}{\pi^2} \sum_{j=0}^{\infty} \frac{(-1)^{j+1} (2\pi\alpha)^{2j+2}}{(2j+5)!} \times \left(-\eta^2 + \frac{1}{3} (2j+5)\eta^3 - \frac{2j+5}{j+3} \eta^{2j+6} + \eta^{2j+7} + \eta^2 (1-\eta)^{2j+5} \right) \left(\log \frac{T}{2\pi} \right)^4$$

uniformly for bounded α .

(We have slightly changed notation from [10], to be consistent with our definition of $L = \frac{1}{2\pi} \log \frac{T}{2\pi}$.)

Putting $\eta = 1$ in the above (which, as it stands, is not allowed under the conditions of the theorem) then $A(\frac{1}{2} + it) = \zeta(\frac{1}{2} + it) + O(t^{-1/2})$, and we have

$$\frac{1}{N(T)} \sum_{0 \le \gamma_n \le T} \left| \zeta^2 \left(\frac{1}{2} + \mathrm{i} (\gamma_n + \alpha/L) \right) \right|^2 \sim \frac{4}{\pi^2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1} (2\pi\alpha)^{2j+2}}{(2j+6)!} (2j^2 + 5j) \left(\log \frac{T}{2\pi} \right)^4.$$

Note that

$$\frac{4}{\pi^2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1} (2\pi\alpha)^{2j+2}}{(2j+6)!} (2j^2 + 5j)$$

$$= \frac{1}{12} a(2) \frac{(2\pi^2\alpha^2 - 3)\sin^2(\pi\alpha) + 3\pi\alpha\sin(2\pi\alpha) + (\pi\alpha)^4 - 3(\pi\alpha)^2}{(\pi\alpha)^4}$$

which is what is predicted in conjecture 5.

That is, from a purely number theoretical calculation involving no random matrix theory, we have

Conjecture 7. Assuming that $\eta = 1$ is permissible in theorem 6 then

$$\frac{1}{N(T)} \sum_{0 \le \gamma \le T} \left| \zeta \left(\frac{1}{2} + i(\gamma_n + \alpha/L) \right) \right|^4 \sim \frac{1}{2\pi^2} F_2(2\pi\alpha) \left(\log \frac{T}{2\pi} \right)^4$$

where $F_2(2x)$ is given in (6).

So, following the proof of corollary 5.1, we may deduce

Corollary 7.1. If conjecture 7 is true then

$$\frac{1}{N(T)} \sum_{0 < \gamma_n \leqslant T} \left| \zeta' \left(\frac{1}{2} + i \gamma_n \right) \right|^4 \sim \frac{1}{1440\pi^2} \left(\log \frac{T}{2\pi} \right)^8.$$

Note that this is the same answer that one gets from putting k = 2 into conjecture 2.

Acknowledgments

Early versions of the results described in this paper formed part of my PhD thesis [18], and I would like to thank my advisors, Jon Keating and Neil O'Connell, for their help and advice. Part of this research was carried out while I was supported by the EC TMR network 'Mathematical Aspects of Quantum Chaos', EC contract no HPRN-CT-2000-00103.

References

- [1] Titchmarsh E C 1986 The Theory of the Riemann Zeta-Function 2nd edn revised by D R Heath-Brown (Oxford: Oxford Science Publications)
- [2] Hardy G H and Littlewood J E 1918 Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes Acta Arith. 41 119–96
- [3] Ingham A E 1926 Mean-values theorems in the theory of the Riemann zeta-function Proc. Lond. Math. Soc. 27 273–300
- [4] Conrey J B and Ghosh A 1998 A conjecture for the sixth power moment of the Riemann zeta-function Int. Math. Res. Not. 15 775–80
- [5] Conrey J B and Gonek S M 2001 High moments of the Riemann zeta function Duke Math. J. 107 577-604
- [6] Keating J P and Snaith N C 2000 Random matrix theory and ζ(1/2 + it) Commun. Math. Phys. 214 57–89
- [7] Hughes C P, Keating J P and O'Connell N 2000 Random matrix theory and the derivative of the Riemann zeta function Proc. R. Soc. A 456 2611–27
- [8] Gonek S M 1989 On negative moments of the Riemann zeta-function Mathematika 36 71-88
- [9] Gonek S M 1984 Mean values of the Riemann zeta function and its derivatives *Invent. Math.* 75 123-41
- [10] Conrey J B, Ghosh A and Gonek S M 1986 Large gaps between zeros of the zeta function *Mathematika* 33 212–38
- [11] Weyl H 1946 Classical Groups (Princeton, NJ: Princeton University Press)
- [12] Mehta M L 1991 Random Matrices (New York: Academic)

- [13] Basor E L 1978 Asymptotic formulas for Toeplitz determinants *Trans. Am. Math. Soc.* 239 33–65
- [14] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions ninth printing (New York: Dover)
- [15] Forrester PJ 1992 Selberg correlation integrals and $1/r^2$ quantum many-body system *Nucl. Phys.* B **388** 671–99
- [16] Kaneko J 1993 Selberg integrals and hypergeometric functions associated with Jack polynomials SIAM J. Math. Anal. 24 1086–110
- [17] Petkovšek M, Wilf H and Zeilberger D 1996 A = B (A K Peters)
- [18] Hughes C P 2001 On the characteristic polynomial of a random unitary matrix and the Riemann zeta function *PhD Thesis* University of Bristol, Bristol