Random matrix theory and discrete moments of the Riemann zeta function

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 362907
(http://iopscience.iop.org/0305-4470/36/12/303)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 02/06/2010 at 11:29

Please note that terms and conditions apply.

Random matrix theory and discrete moments of the Riemann zeta function

C P Hughes ${ }^{1}$

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: hughes@aimath.org
Received 22 November 2002
Published 12 March 2003
Online at stacks.iop.org/JPhysA/36/2907

Abstract

We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.

PACS numbers: 02.10.De, 02.10.Yu

1. Introduction

Let $\zeta(s)$ be the Riemann zeta function, and denote its non-trivial zeros by $1 / 2+\mathrm{i} \gamma_{n}$, with $0<\gamma_{1} \leqslant \gamma_{2} \leqslant \ldots$ (For simplicity, we will assume the Riemann hypothesis, which says that $\gamma_{n} \in \mathbb{R}$.) It is known (see, for example, Titchmarsh's book [1] for details) that if $N(T)$ is the number of zeros with $0<\gamma_{n} \leqslant T$ then

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+\mathrm{O}(\log T)
$$

Moments of the zeta function

$$
I_{k}(T):=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t
$$

have long been of interest to number theorists, with it being widely believed that

$$
\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t \sim f_{k} a(k)(\log T)^{k^{2}}
$$

with

$$
\begin{equation*}
a(k)=\prod_{p \text { prime }}\left(1-\frac{1}{p}\right)^{k^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(m+k)}{m!\Gamma(k)}\right)^{2} p^{-m} \tag{1}
\end{equation*}
$$

${ }^{1}$ Current address: American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306, USA.
and f_{k} being an integer (when k is integer) divided by $\left(k^{2}\right)$!, whose value was unknown apart from in a few cases. The known values of f_{k} are $f_{0}=1$ (trivial), $f_{1}=1$ (Hardy and Littlewood [2]), and $f_{2}=1 / 12$ (Ingham [3]). The value $f_{3}=42 / 9$! has been conjectured by Conrey and Ghosh [4] and $f_{4}=24024 / 16$! is a conjecture of Conrey and Gonek [5]. We should mention that $a(k)$ given in (1) can be calculated for certain k : $a(0)=a(1)=1$ and $a(-1)=a(2)=6 / \pi^{2}$.

In [6], Keating and Snaith argued that one can create a probabilistic model for the zeta function around height T using the characteristic polynomial of an $N \times N$ unitary matrix chosen according to Haar measure, when

$$
N=\log \frac{T}{2 \pi} .
$$

Setting

$$
\begin{aligned}
Z_{U}(\theta) & :=\operatorname{det}\left(I-\mathrm{e}^{-\mathrm{i} \theta} U\right) \\
& =\prod_{n=1}^{N}\left(1-\mathrm{e}^{\mathrm{i}\left(\theta_{n}-\theta\right)}\right)
\end{aligned}
$$

and defining $M_{N}(2 k):=\mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\right\}$ where \mathbb{E}_{N} denotes expectation with respect to Haar measure, they found that

$$
\begin{equation*}
M_{N}(2 k)=\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+2 k)}{\Gamma(j+k)^{2}} \sim \frac{G^{2}(k+1)}{G(2 k+1)} N^{k^{2}} \tag{2}
\end{equation*}
$$

as $N \rightarrow \infty$ for fixed k subject to $\operatorname{Re}(k)>-1 / 2$, where $G(\cdot)$ is the Barnes G-function.
By comparing with the known (and previously conjectured) values of f_{k}, they were led to the conjecture that $f_{k}=G^{2}(k+1) / G(2 k+1)$.

Conjecture 1 (Keating and Snaith). For fixed $k>-1 / 2$, as $T \rightarrow \infty$,

$$
\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+\mathrm{i} t\right)\right|^{2 k} \mathrm{~d} t \sim \frac{G^{2}(k+1)}{G(2 k+1)} a(k)\left(\log \frac{T}{2 \pi}\right)^{k^{2}}
$$

where $G(\cdot)$ is the Barnes G-function and $a(k)$ is given in (1).
Following this, Hughes et al [7] used the characteristic polynomial to model the discrete moments of the derivative of the zeta function,

$$
J_{k}(T):=\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{2 k}
$$

They calculated that for fixed k subject to $\operatorname{Re}(k)>-3 / 2$,

$$
\mathbb{E}_{N}\left\{\frac{1}{N} \sum_{n=1}^{N}\left|Z_{U}^{\prime}\left(\theta_{n}\right)\right|^{2 k}\right\} \sim \frac{G^{2}(k+2)}{G(2 k+3)} N^{k(k+2)}
$$

as $N \rightarrow \infty$, and they used this to conjecture the leading order term in the asymptotic expansion of $J_{k}(T)$.

Conjecture 2 (Hughes, Keating and O'Connell). If all the zeros of the zeta function are simple, then for fixed $k>-3 / 2$, as $T \rightarrow \infty$,

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{2 k} \sim \frac{G^{2}(k+2)}{G(2 k+3)} a(k)\left(\log \frac{T}{2 \pi}\right)^{k(k+2)}
$$

where $a(k)$ is given by (1), and $G(\cdot)$ is the Barnes G-function.

Again this conjecture is found to agree with all previously known results; when $k=-1$ (a conjecture of Gonek [8]), when $k=0$ (trivial) and when $k=1$ (a theorem of Gonek [9] under RH). Also, extending a theorem due to Conrey et al [10] (recorded in this paper as theorem 6) beyond its range of (proven) applicability, conjecture 7.1 states that $J_{2}(T) \sim \frac{1}{1440 \pi^{2}}\left(\log \frac{T}{2 \pi}\right)^{8}$, which agrees perfectly with conjecture 2 .

It is striking that conjectures 1 and 2 have very similar form. The purpose of this paper is to unify them as special cases of one result.

In the next section we will show

$$
\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{1}+\frac{y}{N}\right)\right|^{2 k}\right\} \sim \frac{G^{2}(k+1)}{G(2 k+1)} F_{k}(y) N^{k^{2}}
$$

where $F_{k}(y)$ is a certain function, independent of N, given in theorem 3.
We will then use this to conjecture that for $L=\frac{1}{2 \pi} \log \frac{T}{2 \pi}$,

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{2 k} \sim \frac{G^{2}(k+1)}{G(2 k+1)} a(k) F_{k}(2 \pi \alpha)\left(\log \frac{T}{2 \pi}\right)^{k^{2}}
$$

and will show, in section 3, that this conjecture contains conjectures 1 and 2 as special cases ($\alpha \rightarrow \infty$ and $\alpha \rightarrow 0$ respectively). The conjecture is found to agree with a known result of Gonek [9], and the extension of the theorem due to Conrey et al [10] cited above. These comparisons are discussed in section 3.1.

2. The random matrix calculation

Theorem 3. For fixed k with $\operatorname{Re}(k)>-1 / 2$, and for $|x| \leqslant A N$, with $A<\pi$ constant,

$$
\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{1}+\frac{2 x}{N}\right)\right|^{2 k}\right\}=\frac{G^{2}(k+1)}{G(2 k+1)} F_{k}(2 x) N^{k^{2}}+\mathrm{O}\left(N^{k^{2}-1}\right)
$$

where

$$
\begin{equation*}
F_{k}(2 x)=x^{2} j_{k}(x)^{2}+x^{2} j_{k-1}(x)^{2}-2 k x j_{k}(x) j_{k-1}(x) \tag{3}
\end{equation*}
$$

where $j_{n}(x)$ are the spherical Bessel functions of the first kind.
Proof. First note that

$$
\left|Z_{U}\left(\theta_{N}+\beta\right)\right|^{2 k}=\left|1-\mathrm{e}^{-\mathrm{i} \beta}\right|^{2 k} \prod_{n=1}^{N-1}\left|1-\mathrm{e}^{\mathrm{i}\left(\theta_{n}-\theta_{N}-\beta\right)}\right|^{2 k}
$$

The average of this over all $N \times N$ unitary matrices with Haar measure can be written $[11,12]$ as an N-fold integral

$$
\begin{gathered}
\mathbb{E}_{N}\left\{\prod_{n=1}^{N-1}\left|1-\mathrm{e}^{\mathrm{i}\left(\theta_{n}-\theta_{N}-\beta\right)}\right|^{2 k}\right\}=\frac{1}{N!(2 \pi)^{N}} \int_{-\pi}^{\pi} \ldots \int_{-\pi}^{\pi} \prod_{1 \leqslant i<j \leqslant N}\left|\mathrm{e}^{\mathrm{i} \theta_{i}}-\mathrm{e}^{\mathrm{i} \theta_{j}}\right|^{2} \\
\times \prod_{n=1}^{N-1}\left|1-\mathrm{e}^{\mathrm{i}\left(\theta_{n}-\theta_{N}-\beta\right)}\right|^{2 k} \mathrm{~d} \theta_{1} \ldots \mathrm{~d} \theta_{N} .
\end{gathered}
$$

Putting all the $j=N$ terms from the first product into the second, we see that

$$
\begin{equation*}
\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{N}+\beta\right)\right|^{2 k}\right\}=\frac{1}{N}\left|2 \sin \left(\frac{1}{2} \beta\right)\right|^{2 k} \mathbb{E}_{N-1}\left\{\left|Z_{\widetilde{U}}(0)\right|^{2}\left|Z_{\widetilde{U}}(\beta)\right|^{2 k}\right\} \tag{4}
\end{equation*}
$$

where $Z_{\widetilde{U}}$ is the characteristic polynomial of an $(N-1) \times(N-1)$ unitary matrix.

By rotation invariance of Haar measure,

$$
\mathbb{E}_{N-1}\left\{\left|Z_{\widetilde{U}}(0)\right|^{2}\left|Z_{\widetilde{U}}(\beta)\right|^{2 k}\right\}=\mathbb{E}_{N-1}\left\{\left|Z_{\widetilde{U}}(0)\right|^{2 k}\left|Z_{\widetilde{U}}(\beta)\right|^{2}\right\} .
$$

This is calculated in theorem 4, where it is shown that for $\operatorname{Re}(k)>-1 / 2$,
$\mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\left|Z_{U}(y / N)\right|^{2}\right\} \sim \frac{G^{2}(k+1)}{G(2 k+1)} \sum_{p=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2 k+p)!(2 k+1+2 p)!}(-1)^{p} y^{2 p} N^{(k+1)^{2}}$
and substituting this into (4) (where we put $\beta=y / N$) we see that

$$
\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{N}+\frac{y}{N}\right)\right|^{2 k}\right\}=\frac{G^{2}(k+1)}{G(2 k+1)} F_{k}(y) N^{k^{2}}\left(1+\mathrm{O}\left(\frac{1}{N}\right)\right)
$$

where

$$
\begin{equation*}
F_{k}(y)=k \sum_{p=0}^{\infty} \frac{(k-1+p)!(k+p)!}{p!(2 k+p)!(2 k+1+2 p)!}(-1)^{p} y^{2 k+2 p} . \tag{5}
\end{equation*}
$$

The spherical Bessel functions of the first kind are defined as

$$
j_{n}(z)=\sqrt{\frac{\pi}{2 z}} J_{n+1 / 2}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}(n+m)!}{m!(2 n+2 m+1)!2^{2 m}}(2 z)^{n+2 m}
$$

where $J_{\nu}(z)$ is the ν th order Bessel function of the first kind. Hence,

$$
F_{k}(2 x)=x^{2} j_{k}(x)^{2}+x^{2} j_{k-1}(x)^{2}-2 k x j_{k}(x) j_{k-1}(x)
$$

which can be seen by comparing the Taylor expansions.
The above large- N asymptotics are for $x=o(N)$. This can be extended to $|x| \leqslant A N$ for an arbitrary constant $A<\pi$ as follows: let β be a fixed constant subject to $0<\beta<2 \pi$. By (4) and the results of Basor [13],
$\mathbb{E}_{N}\left\{\left|Z_{U}\left(\theta_{1}+\beta\right)\right|^{2 k}\right\}=\frac{1}{N}\left|2 \sin \left(\frac{1}{2} \beta\right)\right|^{2 k} \mathbb{E}_{N-1}\left\{\left|Z_{\widetilde{U}}(0)\right|^{2 k}\left|Z_{\widetilde{U}}(\beta)\right|^{2}\right\} \sim \frac{G^{2}(k+1)}{G(2 k+1)} N^{k^{2}}$.
If one lets $x=N \beta / 2$ then the large- x asymptotics of Bessel functions (see, for example, chapter 9 of [14]) implies that

$$
F_{k}(N \beta)=1+\mathrm{O}\left(\frac{1}{N}\right)
$$

and so theorem 3 gives the correct first-order term, for $|x| \leqslant A N$ for $A<\pi$ a constant.
Remark. When n is an integer,

$$
j_{n}(x)=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} \frac{\sin x}{x}
$$

which leads to a neat evaluation of $F_{k}(2 x)$ for integer k, the first few being:
$F_{1}(2 x)=\frac{x^{2}-\sin ^{2}(x)}{x^{2}}$
$F_{2}(2 x)=\frac{x^{4}-3 x^{2}+3 x \sin (2 x)+\left(2 x^{2}-3\right) \sin ^{2}(x)}{x^{4}}$
$F_{3}(2 x)=\frac{x^{6}-3 x^{4}-45 x^{2}+\left(-12 x^{3}+45 x\right) \sin (2 x)+\left(-3 x^{4}+72 x^{2}-45\right) \sin ^{2}(x)}{x^{6}}$.

Theorem 4.

$$
\begin{aligned}
& \mathbb{E}_{N}\left\{|Z(0)|^{2 k}|Z(\beta)|^{2}\right\}=M_{N}(2 k) N!(N+2 k)! \\
& \quad \times \sum_{n=0}^{N} \frac{(2 \sin (\beta / 2))^{2 n}}{n!(2 k+n)!} \sum_{m=0}^{N-n} \frac{(N+k-m)!(k+m+n)!}{(N-n-m)!m!} \mathrm{e}^{\mathrm{i} \beta(2 m-N+n)}
\end{aligned}
$$

where $M_{N}(2 k)$ is given in (2). If $\frac{y}{N} \rightarrow 0$ as $N \rightarrow \infty$, then for fixed $\operatorname{Re}(k)>-1 / 2$,

$$
\begin{aligned}
& \mathbb{E}_{N}\left\{|Z(0)|^{2 k}\left|Z\left(\frac{y}{N}\right)\right|^{2}\right\}=\frac{G^{2}(k+1)}{G(2 k+1)} \sum_{p=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2 k+p)!(2 k+1+2 p)!}(-1)^{p} y^{2 p} \\
& \times N^{(k+1)^{2}}\left(1+\mathrm{O}\left(\frac{1}{N}\right)\right)
\end{aligned}
$$

Proof. If k is an integer, then

$$
\begin{aligned}
& \mathbb{E}_{N}\left\{\prod_{n=1}^{N}\left|1-\mathrm{e}^{\mathrm{i} \theta_{n}}\right|^{2 k}\left|1-\mathrm{e}^{\mathrm{i} \theta_{n}} \mathrm{e}^{-\mathrm{i} \beta}\right|^{2}\right\} \\
&= \frac{1}{(2 \pi)^{N} N!} \int \cdots \int_{-\pi}^{\pi} \prod_{1 \leqslant j<m \leqslant N}\left(\mathrm{e}^{\mathrm{i} \theta_{j}}-\mathrm{e}^{\mathrm{i} \theta_{m}}\right)\left(\mathrm{e}^{-\mathrm{i} \theta_{j}}-\mathrm{e}^{-\mathrm{i} \theta_{m}}\right) \\
& \times \prod_{n=1}^{N}\left(1-\mathrm{e}^{\mathrm{i} \theta_{n}}\right)^{k}\left(1-\mathrm{e}^{-\mathrm{i} \theta_{n}}\right)^{k}\left(1-\mathrm{e}^{\mathrm{i} \theta_{n}} \mathrm{e}^{-\mathrm{i} \beta}\right)\left(1-\mathrm{e}^{-\mathrm{i} \theta_{n}} \mathrm{e}^{\mathrm{i} \beta}\right) \mathrm{d} \theta_{n}
\end{aligned}
$$

which equals, after some simple manipulation of the terms

$$
\begin{array}{r}
\frac{(-1)^{N(N-1) / 2+k N+N} \mathrm{e}^{-\mathrm{i} N \beta}}{(2 \pi)^{N} N!} \int \cdots \int_{-\pi}^{\pi} \prod_{1 \leqslant j<m \leqslant N}\left(\mathrm{e}^{\mathrm{i} \theta_{j}}-\mathrm{e}^{\mathrm{i} \theta_{m}}\right)^{2} \\
\times \prod_{n=1}^{N}\left(\mathrm{e}^{\mathrm{i} \theta_{n}}\right)^{-N-k}\left(1-\mathrm{e}^{\mathrm{i} \theta_{n}}\right)^{2 k}\left(\mathrm{e}^{\mathrm{i} \theta_{n}}-\mathrm{e}^{\mathrm{i} \beta}\right)^{2} \mathrm{~d} \theta_{n} .
\end{array}
$$

Therefore,
$\mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\left|Z_{U}(\beta)\right|^{2}\right\}=\frac{\mathrm{e}^{-\mathrm{i} N \beta}}{N!}(-1)^{N(N-1) / 2+k N+N}$

$$
\times \mathrm{CT}\left\{\prod_{1 \leqslant j<m \leqslant N}\left(t_{j}-t_{m}\right)^{2} \prod_{n=1}^{N} \frac{1}{t_{n}^{N+k}}\left(1-t_{n}\right)^{2 k}\left(t_{n}-\mathrm{e}^{\mathrm{i} \beta}\right)^{2}\right\}
$$

where $\mathrm{CT}\{\cdot\}$ denotes the constant term in the Laurent expansion in the variables t_{1}, \ldots, t_{N}. The constant term equals (by lemma 1 of [15])

$$
\lim _{y \rightarrow 0} y^{N} \int \cdots \int_{0}^{1} \prod_{1 \leqslant j<m \leqslant N}\left(t_{j}-t_{m}\right)^{2} \prod_{n=1}^{N} t_{n}^{-N-k+y-1}\left(1-t_{n}\right)^{2 k}\left(t_{n}-\mathrm{e}^{\mathrm{i} \beta}\right)^{2} \mathrm{~d} t_{n}
$$

Kaneko [16] has evaluated this integral (which is a generalization of Selberg's integral) as

$$
\begin{aligned}
& \prod_{j=1}^{N} \frac{\Gamma(1+j) \Gamma(j+y-N-k) \Gamma(j+2 k+1)}{\Gamma(j+y+k+1)} \\
& \times \sum_{m, n=0}^{\infty} \frac{(-N)_{m+n}(y+k+1)_{m+n}}{(y-N-k)_{m}(2 k+1)_{n}} \frac{\mathrm{e}^{2 m i \beta}\left(1-\mathrm{e}^{\mathrm{i} \beta}\right)^{2 n}}{m!n!}
\end{aligned}
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)=\Gamma(a+n) / \Gamma(a)$. Since we have assumed that k is an integer,

$$
\lim _{y \rightarrow 0} y \Gamma(y+j-N-k)=\frac{(-1)^{N+k-j}}{\Gamma(N+k-j+1)}
$$

and so we have

$$
\begin{gathered}
\mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\left|Z_{U}(\beta)\right|^{2}\right\}=\frac{\mathrm{e}^{-\mathrm{i} N \beta}}{N!} \prod_{j=1}^{N} \frac{\Gamma(1+j) \Gamma(j+2 k+1)}{\Gamma(j+k+1) \Gamma(N+k-j+1)} \\
\times \sum_{m, n=0}^{\infty} \frac{(-N)_{m+n}(k+1)_{m+n}}{(-N-k)_{m}(2 k+1)_{n}} \frac{\mathrm{e}^{2 m i \beta}\left(1-\mathrm{e}^{\mathrm{i} \beta}\right)^{2 n}}{m!n!}
\end{gathered}
$$

Expanding everything out in terms of the gamma function

$$
\begin{aligned}
& \mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\left|Z_{U}(\beta)\right|^{2}\right\}=M_{N}(2 k) \frac{\Gamma(N+1+2 k) N!}{\Gamma(N+1+k)^{2}} \sum_{n=0}^{N} \frac{(2 \sin (\beta / 2))^{2 n}}{n!\Gamma(2 k+n+1)} \\
& \times \sum_{m=0}^{N-n} \frac{\Gamma(N+k+1-m) \Gamma(k+n+1+m)}{\Gamma(N+1-n-m)!} \frac{\mathrm{e}^{\mathrm{i} \beta(2 m-N+n)}}{m!}
\end{aligned}
$$

where $M_{N}(2 k)$ is defined in (2). Observe that the inner summand is invariant as $m \longrightarrow$ $N-n-m$, and so the inner sum is in fact a sum of cosines (and thus the series expansion in β contains only even powers of β). Furthermore, observe that both sides of the equation are analytic functions of k (for $\operatorname{Re}(k) \geqslant 0)$, both sides can be easily bounded by $\mathrm{O}\left(2^{2 N \operatorname{Re}(k)}\right)$ (for large k, with N and β fixed), and the two sides are equal at the positive integers. Thus by Carlson's theorem (see section 17 of [12], for example), the restriction that k must be an integer in the above calculations is no longer required, and the left-hand side equals the right-hand side for all complex k.

Now, using the fact that $(-a)_{n}=(-1)^{n} \Gamma(a+1) / \Gamma(a+1-n)$, we have

$$
\begin{aligned}
& \sum_{m=0}^{N-n} \frac{\Gamma(N+k+1-m) \Gamma(k+n+1+m)}{\Gamma(N+1-n-m)} \frac{\mathrm{e}^{\mathrm{i} \beta(2 m-N+n)}}{m!} \\
& \quad=\frac{\Gamma(N+k+1) \Gamma(k+n+1)}{\Gamma(N-n+1)}{ }_{2} F_{1}\left(\begin{array}{c}
-N+n, k+n+1 \\
-N-k
\end{array} ; \mathrm{e}^{2 \mathrm{i} \beta}\right) \mathrm{e}^{\mathrm{i}(n-N) \beta}
\end{aligned}
$$

where

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; z\right)=\sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{z^{m}}{m!}
$$

is the Gauss hypergeometric function. (If a, c are negative integers with $-a<-c$ then it is a polynomial of degree $-a$.)

Applying the quadratic hypergeometric transformation 15.3.26 of [14] we get

$$
\begin{align*}
& { }_{2} F_{1}\left(\begin{array}{c}
-N+n, k+n+1 \\
-N-k
\end{array} ; \mathrm{e}^{2 \mathrm{i} \beta}\right) \mathrm{e}^{\mathrm{i}(n-N) \beta} \\
& \quad={ }_{2} F_{1}\left(\begin{array}{c}
-\frac{1}{2} N+\frac{1}{2} n,-\frac{1}{2} N+\frac{1}{2} n+\frac{1}{2} \\
-N-k
\end{array} \frac{1}{\cos ^{2}(\beta)}\right)(2 \cos \beta)^{N-n} . \tag{7}
\end{align*}
$$

For a positive integer m,
${ }_{2} F_{1}\left(\begin{array}{c}-m, b \\ c\end{array} ; z\right)=\frac{\Gamma(1-c-m) \Gamma(1-c+b)}{\Gamma(1-c) \Gamma(1-c-m+b)}{ }_{2} F_{1}\left(\begin{array}{c}-m, b \\ 1-c-m+b\end{array} ; 1-z\right)$
and so we see that the right-hand side of (7) equals

$$
\begin{aligned}
& \frac{\Gamma\left(\frac{1}{2} N+\frac{1}{2} n+k+1\right) \Gamma\left(\frac{1}{2} N+\frac{1}{2} n+k+\frac{3}{2}\right)}{\Gamma(N+k+1) \Gamma\left(k+n+\frac{3}{2}\right)}(2 \cos \beta)^{N-n} \\
& \quad \times{ }_{2} F_{1}\left(\begin{array}{c}
-\frac{1}{2} N+\frac{1}{2} n,-\frac{1}{2} N+\frac{1}{2} n+\frac{1}{2} \\
n+k+\frac{3}{2}
\end{array} ; 1-\frac{1}{\cos ^{2}(\beta)}\right)
\end{aligned}
$$

Therefore, we have proven

$$
\begin{aligned}
& \mathbb{E}_{N}\left\{\left|Z_{U}(0)\right|^{2 k}\left|Z_{U}(\beta)\right|^{2}\right\} \\
& \quad=\sum_{n=0}^{N} \sum_{m=0}^{\left\lfloor\frac{1}{2}(N-n)\right\rfloor} T(N, k, m, n)(-1)^{m}(2 \sin (\beta / 2))^{2 n}(\sin \beta)^{2 m}(\cos \beta)^{N-n-2 m}
\end{aligned}
$$

where

$$
\begin{aligned}
T(N, k, m, n) & =M_{N}(2 k) \frac{N!(N+2 k)!\left(\frac{1}{2} N+\frac{1}{2} n+k\right)!\left(\frac{1}{2} N+\frac{1}{2} n+k+\frac{1}{2}\right)!}{(N-n)!(N+k)!^{2}} \\
& \times \frac{2^{N-n}\left(-\frac{1}{2} N+\frac{1}{2} n\right)_{m}\left(-\frac{1}{2} N+\frac{1}{2} n+\frac{1}{2}\right)_{m}(k+n)!}{m!n!(2 k+n)!\left(n+k+\frac{1}{2}+m\right)!} .
\end{aligned}
$$

Observe that for fixed k, m, n with $\operatorname{Re}(k)>-1 / 2$,
$T(N, k, m, n)=\frac{G^{2}(k+1)}{G(2 k+1)} \frac{(k+n)!(k+n+m)!}{m!n!(2 k+n)!(2 k+2 n+2 m+1)!} N^{(k+1)^{2}+2 n+2 m}\left(1+\mathrm{O}\left(\frac{1}{N}\right)\right)$
and so

$$
\begin{aligned}
\mathbb{E}_{N}\left\{|Z(0)|^{2 k}|Z(y / N)|^{2}\right\} & \sim \frac{G^{2}(k+1)}{G(2 k+1)} N^{(k+1)^{2}} \\
& \times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}(-1)^{m} \frac{(k+n)!(k+n+m)!}{m!n!(2 k+n)!(2 k+2 n+2 m+1)!} y^{2 m+2 n}
\end{aligned}
$$

in the sense that for each fixed integer h, the coefficient of y^{h} on the Taylor expansion of the left-hand side converges to that of the right-hand side as $N \rightarrow \infty$.

Finally we show that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}(-1)^{m} & \frac{(k+n)!(k+n+m)!}{m!n!(2 k+n)!(2 k+2 n+2 m+1)!} y^{2 m+2 n} \\
& =\sum_{p=0}^{\infty} \frac{k(k-1+p)!(k+p)!}{p!(2 k+p)!(2 k+1+2 p)!}(-1)^{p} y^{2 p}
\end{aligned}
$$

This can be proven by comparing the coefficients of $y^{2 p}$. That is, we wish to show for all integer $p \geqslant 0$,

$$
\sum_{n=0}^{p} \frac{(-1)^{p-n}(k+n)!(k+p)!}{(p-n)!n!(2 k+n)!(2 k+2 p+1)!}=\frac{(-1)^{p} k(k-1+p)!(k+p)!}{p!(2 k+p)!(2 k+1+2 p)!}
$$

This is equivalent to showing

$$
\begin{equation*}
\sum_{n=0}^{p} \frac{(-1)^{n}(k+n)!p!(2 k+p)!}{k(p-n)!n!(2 k+n)!(k-1+p)!}=1 \tag{8}
\end{equation*}
$$

for all integer $p \geqslant 0$, and this we shall do by creating the Wilf-Zeilberger pair [17]. Denote the summand in (8) by $F(p, n)$, and observe that

$$
\begin{equation*}
F(p+1, n)-F(p, n)=G(p, n+1)-G(p, n) \tag{9}
\end{equation*}
$$

where

$$
G(p, n)=\frac{(2 k+n) n}{(n-p-1)(k+p)} F(p, n)
$$

(the $(2 k+n) n /(n-p-1)(k+p)$ being calculated by Zeilberger's algorithm). Summing both sides of (9) over n, we see that the right-hand side telescopes to zero, which shows that the left-hand side of (8) must be a constant, independent of p. Putting $p=0$, direct calculation shows that the constant is 1 .

3. Conjecture about the zeta function

Conjecture 5. For fixed k subject to $\operatorname{Re}(k)>-1 / 2$,
$\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{2 k} \sim \frac{G^{2}(k+1)}{G(2 k+1)} a(k) F_{k}(2 \pi \alpha)\left(\log \frac{T}{2 \pi}\right)^{k^{2}}$
as $T \rightarrow \infty$, uniformly in α for $|\alpha| \leqslant L$, where $L=\frac{1}{2 \pi} \log \frac{T}{2 \pi}$ is the density of zeros of height $T, G(\cdot)$ is the Barnes G-function, $a(k)$ is given by (1) and $F_{k}(2 \pi \alpha)$ is given in theorem 3.

If this conjecture is true, then we are able to prove conjecture 2 and a variant of the Keating-Snaith conjecture (conjecture 1).

Corollary 5.1. If conjecture 5 is true, then

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{2 k} \sim \frac{G^{2}(k+2)}{G(2 k+3)} a(k)\left(\log \frac{T}{2 \pi}\right)^{k(k+2)} .
$$

Proof. By the definition of differentiation,

$$
\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{2 k}=L^{2 k} \lim _{a \rightarrow 0} \frac{\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\frac{\alpha}{L}\right)\right)\right|^{2 k}}{\alpha^{2 k}}
$$

From (5) we have

$$
\lim _{\alpha \rightarrow 0} \frac{F(2 \pi \alpha)}{\alpha^{2 k}}=(2 \pi)^{2 k} \frac{k!k!}{(2 k)!(2 k+1)!}
$$

so applying conjecture 5 and using uniformity to swap the $\alpha \rightarrow 0$ and $N \rightarrow \infty$ limits, we have

$$
\begin{gathered}
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{2 k} \sim \frac{G^{2}(k+1)}{G(2 k+1)} a(k) L^{2 k} \frac{(2 \pi)^{2 k} k!k!}{(2 k)!(2 k+1)!}\left(\log \frac{T}{2 \pi}\right)^{k^{2}} \\
=\frac{G^{2}(k+2)}{G(2 k+3)} a(k)\left(\log \frac{T}{2 \pi}\right)^{k(k+2)}
\end{gathered}
$$

as required.
Corollary 5.2. From conjecture 5 it follows that for $\beta>0$ fixed,

$$
\begin{equation*}
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\beta\right)\right)\right|^{2 k} \sim \frac{G^{2}(k+1)}{G(2 k+1)} a(k)\left(\log \frac{T}{2 \pi}\right)^{k^{2}} \tag{10}
\end{equation*}
$$

Proof. The asymptotics as $z \rightarrow \infty$ of the spherical Bessel function (see chapters 9 and 10 of [14]) are

$$
j_{n}(z) \sim\left\{\begin{array}{ll}
\frac{1}{z}(-1)^{(n+1) / 2} \cos z & \text { if } \\
n \text { is odd } \\
\frac{1}{z}(-1)^{n / 2} \sin z & \text { if }
\end{array} n\right. \text { is even }
$$

and putting this into (3) we have

$$
\lim _{\alpha \rightarrow \infty} F_{k}(2 \pi \alpha)=1
$$

Setting $\alpha=L \beta$ in conjecture 5 completes the proof.
Remark. Note that corollary 5.2 can be thought of as a variant of conjecture 1. This is because one expects the mean of $|\zeta(1 / 2+i t)|^{2 k}$ to be independent of the average taken, and the Keating-Snaith conjecture is a result about the continuous mean, whereas corollary 5.2 is a result about a discrete mean. To see this, recall that the zeros get denser higher up the critical line, and so if $\beta>0$ is fixed and γ_{n} is random, one might expect $\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\beta\right)\right)$ to be random (whereas, if β was small, it would be highly influenced by the fact that $\zeta\left(1 / 2+\mathrm{i} \gamma_{n}\right)=0$). The left-hand side of (10) averages this, and thus acts as a discrete mean of $|\zeta(1 / 2+i t)|^{2 k}$.

3.1. Comparison with the zeta function

Gonek [9] showed that if the Riemann hypothesis is true then

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{2} \sim\left(1-\left(\frac{\sin (\pi \alpha)}{\pi \alpha}\right)^{2}\right) \log \frac{T}{2 \pi}
$$

uniformly in α for $|\alpha| \leqslant L / 2$, which is in perfect agreement with conjecture 5 when $k=1$.
There is no proof of the conjecture for $k=2$ (unlike conjecture 1 which is proven for $k=1$ and 2). But there are theorems along the lines of conjecture 5 for $k=2$.

Theorem 6 (Conrey, Ghosh and Gonek [10]). Assume GRH and let

$$
A(s)=\sum_{n \leqslant x} n^{-s} \quad \text { where } \quad x=\left(\frac{T}{2 \pi}\right)^{\eta}
$$

for some $\eta \in\left(0, \frac{1}{2}\right)$. Then,

$$
\begin{aligned}
& \frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta A\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{2} \sim \frac{6}{\pi^{2}} \sum_{j=0}^{\infty} \frac{(-1)^{j+1}(2 \pi \alpha)^{2 j+2}}{(2 j+5)!} \\
& \times\left(-\eta^{2}+\frac{1}{3}(2 j+5) \eta^{3}-\frac{2 j+5}{j+3} \eta^{2 j+6}+\eta^{2 j+7}+\eta^{2}(1-\eta)^{2 j+5}\right)\left(\log \frac{T}{2 \pi}\right)^{4}
\end{aligned}
$$

uniformly for bounded α.
(We have slightly changed notation from [10], to be consistent with our definition of $L=\frac{1}{2 \pi} \log \frac{T}{2 \pi}$.)

Putting $\eta=1$ in the above (which, as it stands, is not allowed under the conditions of the theorem) then $A\left(\frac{1}{2}+\mathrm{i} t\right)=\zeta\left(\frac{1}{2}+\mathrm{i} t\right)+\mathrm{O}\left(t^{-1 / 2}\right)$, and we have

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{2}\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{2} \sim \frac{4}{\pi^{2}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}(2 \pi \alpha)^{2 j+2}}{(2 j+6)!}\left(2 j^{2}+5 j\right)\left(\log \frac{T}{2 \pi}\right)^{4}
$$

Note that

$$
\begin{aligned}
& \frac{4}{\pi^{2}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}(2 \pi \alpha)^{2 j+2}}{(2 j+6)!}\left(2 j^{2}+5 j\right) \\
& \quad=\frac{1}{12} a(2) \frac{\left(2 \pi^{2} \alpha^{2}-3\right) \sin ^{2}(\pi \alpha)+3 \pi \alpha \sin (2 \pi \alpha)+(\pi \alpha)^{4}-3(\pi \alpha)^{2}}{(\pi \alpha)^{4}}
\end{aligned}
$$

which is what is predicted in conjecture 5 .
That is, from a purely number theoretical calculation involving no random matrix theory, we have

Conjecture 7. Assuming that $\eta=1$ is permissible in theorem 6 then

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta\left(\frac{1}{2}+\mathrm{i}\left(\gamma_{n}+\alpha / L\right)\right)\right|^{4} \sim \frac{1}{2 \pi^{2}} F_{2}(2 \pi \alpha)\left(\log \frac{T}{2 \pi}\right)^{4}
$$

where $F_{2}(2 x)$ is given in (6).
So, following the proof of corollary 5.1, we may deduce

Corollary 7.1. If conjecture 7 is true then

$$
\frac{1}{N(T)} \sum_{0<\gamma_{n} \leqslant T}\left|\zeta^{\prime}\left(\frac{1}{2}+\mathrm{i} \gamma_{n}\right)\right|^{4} \sim \frac{1}{1440 \pi^{2}}\left(\log \frac{T}{2 \pi}\right)^{8}
$$

Note that this is the same answer that one gets from putting $k=2$ into conjecture 2 .

Acknowledgments

Early versions of the results described in this paper formed part of my PhD thesis [18], and I would like to thank my advisors, Jon Keating and Neil O'Connell, for their help and advice. Part of this research was carried out while I was supported by the EC TMR network 'Mathematical Aspects of Quantum Chaos', EC contract no HPRN-CT-2000-00103.

References

[1] Titchmarsh E C 1986 The Theory of the Riemann Zeta-Function 2nd edn revised by D R Heath-Brown (Oxford: Oxford Science Publications)
[2] Hardy G H and Littlewood J E 1918 Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes Acta Arith. 41 119-96
[3] Ingham A E 1926 Mean-values theorems in the theory of the Riemann zeta-function Proc. Lond. Math. Soc. 27 273-300
[4] Conrey J B and Ghosh A 1998 A conjecture for the sixth power moment of the Riemann zeta-function Int. Math. Res. Not. 15 775-80
[5] Conrey J B and Gonek S M 2001 High moments of the Riemann zeta function Duke Math. J. 107 577-604
[6] Keating J P and Snaith N C 2000 Random matrix theory and $\zeta(1 / 2+\mathrm{i} t)$ Commun. Math. Phys. 214 57-89
[7] Hughes C P, Keating J P and O'Connell N 2000 Random matrix theory and the derivative of the Riemann zeta function Proc. R. Soc. A 456 2611-27
[8] Gonek S M 1989 On negative moments of the Riemann zeta-function Mathematika 36 71-88
[9] Gonek S M 1984 Mean values of the Riemann zeta function and its derivatives Invent. Math. 75 123-41
[10] Conrey J B, Ghosh A and Gonek S M 1986 Large gaps between zeros of the zeta function Mathematika 33 212-38
[11] Weyl H 1946 Classical Groups (Princeton, NJ: Princeton University Press)
[12] Mehta M L 1991 Random Matrices (New York: Academic)
[13] Basor E L 1978 Asymptotic formulas for Toeplitz determinants Trans. Am. Math. Soc. 239 33-65
[14] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions ninth printing (New York: Dover)
[15] Forrester P J 1992 Selberg correlation integrals and $1 / r^{2}$ quantum many-body system Nucl. Phys. B 388 671-99
[16] Kaneko J 1993 Selberg integrals and hypergeometric functions associated with Jack polynomials SIAM J. Math. Anal. 24 1086-110
[17] Petkovšek M, Wilf H and Zeilberger D $1996 A=B$ (A K Peters)
[18] Hughes C P 2001 On the characteristic polynomial of a random unitary matrix and the Riemann zeta function PhD Thesis University of Bristol, Bristol

